Non-fixed and Asymmetrical Margin Approach to Stock Market Prediction Using Support Vector Regression

نویسندگان

  • Haiqin Yang
  • Irwin King
  • Laiwan Chan
چکیده

Recently, Support Vector Regression (SVR) has been applied to financial time series prediction. Typical characteristics of financial time series are non-stationary and noisy in nature. The volatility, usually time-varying, of the time series is therefore some valuable information about the series. Previously, we had proposed to use the volatility to adaptively change the width of the margin of SVR. We have noticed that upside margin and downside margin do not necessary be the same, and we have observed that their choice would affect the upside risk, downside risk and as well as the overall prediction result. In this paper, we introduce a novel approach to adapt the asymmetrical margins using momentum. We applied and compared this method to predict the Hang Seng Index and Dow Jones Industrial Average.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Margin Variations in Support Vector Regression for the Stock Market Prediction

Support Vector Regression (SVR) has been applied successfully to financial time series prediction recently. In SVR, the ε-insensitive loss function is usually used to measure the empirical risk. The margin in this loss function is fixed and symmetrical. Typically, researchers have used methods such as crossvalidation or random selection to select a suitable ε for that particular data set. In ad...

متن کامل

Financial Time Series Prediction Using Non-fixed and Asymmetrical Margin Setting with Momentum in Support Vector Regression

Recently, Support Vector Regression (SVR) has been applied to financial time series prediction. Typical characteristics of financial time series are nonstationary and noisy in nature. The volatility, usually time-varying, of the time series therefore contains some valuable information about the series. Previously, we had proposed to use the volatility in the data to adaptively changing the widt...

متن کامل

Applying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market

Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...

متن کامل

Support Vector Machine Regression for Volatile Stock Market Prediction

Recently, Support Vector Regression (SVR) has been introduced to solve regression and prediction problems. In this paper, we apply SVR to financial prediction tasks. In particular, the financial data are usually noisy and the associated risk is time-varying. Therefore, our SVR model is an extension of the standard SVR which incorporates margins adaptation. By varying the margins of the SVR, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002